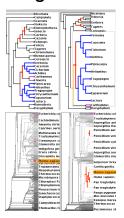
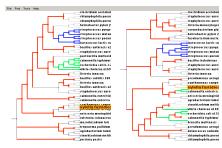
Scalable Visual Comparison of Biological Trees and Sequences

Tamara Munzner
University of British Columbia
Department of Computer Science


Outline

- Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework

2


Accordion Drawing

- rubber-sheet navigation
 - stretch out part of surface, the rest squishes
 - borders nailed down
 - Focus+Context techniqueintegrated overview, details
 - old idea
 - [Sarkar et al 93], [Robertson et al 91]
- · guaranteed visibility
 - marks always visible
 - important for scalability
 - new idea
 - [Munzner et al 03]

Guaranteed Visibility

- · marks are always visible
- easy with small datasets

Guaranteed Visibility Challenges

- hard with larger datasets
- · reasons a mark could be invisible

Guaranteed Visibility Challenges

- · hard with larger datasets
- reasons a mark could be invisible
 - outside the window
 - · AD solution: constrained navigation

. .

5

Guaranteed Visibility Challenges

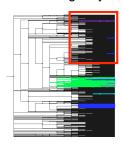
- hard with larger datasets
- · reasons a mark could be invisible
 - outside the window
 - · AD solution: constrained navigation
 - underneath other marks
 - · AD solution: avoid 3D

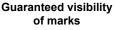
11

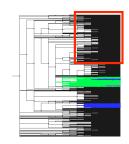
Guaranteed Visibility Challenges

- · hard with larger datasets
- · reasons a mark could be invisible
 - outside the window
 - AD solution: constrained navigation

- underneath other marks
 - · AD solution: avoid 3D

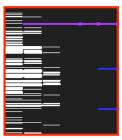



- smaller than a pixel
 - · AD solution: smart culling



Guaranteed Visibility: Small Items

· Naïve culling may not draw all marked items

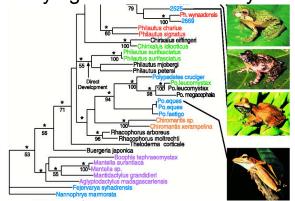


No guaranteed visibility

Guaranteed Visibility: Small Items

Naïve culling may not draw all marked items

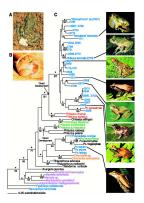
Guaranteed visibility of marks


No guaranteed visibility

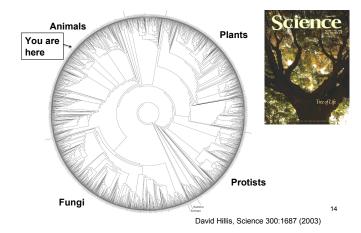
10

Outline

- Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - -tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework


Phylogenetic/Evolutionary Tree

M Meegaskumbura et al., Science 298:379 (2002)


1:

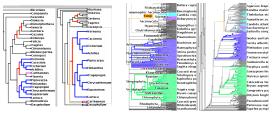
Common Dataset Size Today

M Meegaskumbura et al., Science 298:379 (2002)

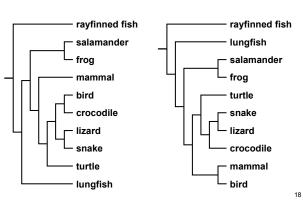
Future Goal: 10M node Tree of Life

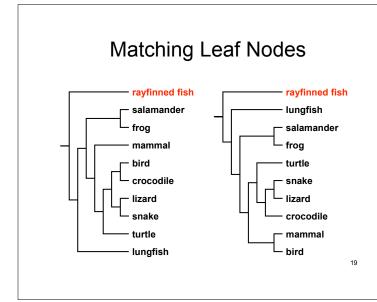
Paper Comparison: Multiple Trees

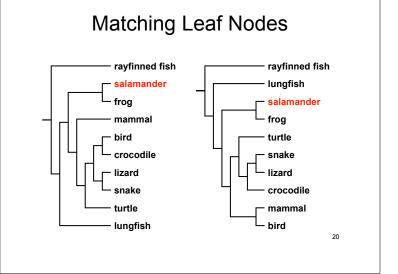
focus

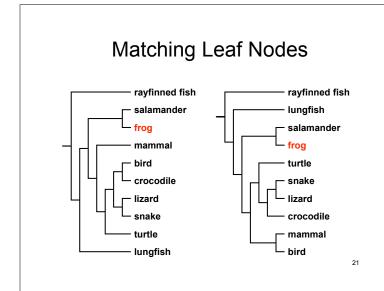


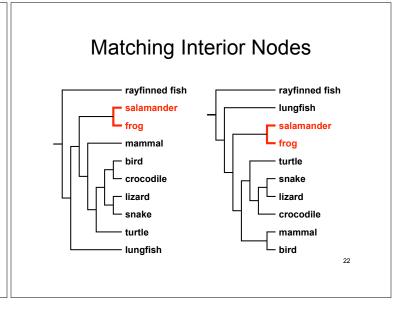
TreeJuxtaposer

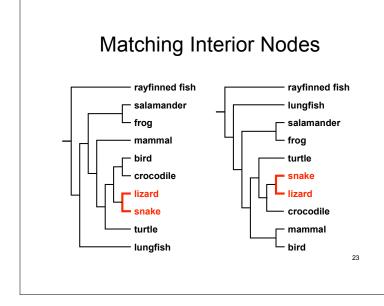

- · side by side comparison of evolutionary trees
- [video]
 - video/software downloadable from http://olduvai.sf.net/tj

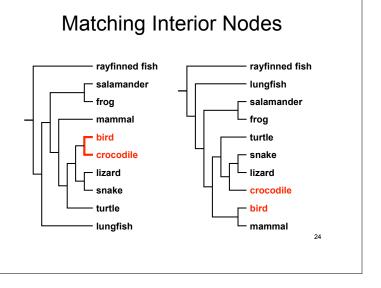


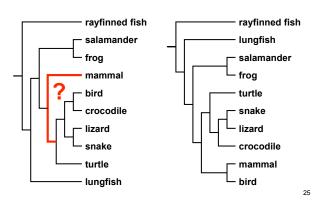

TJ Contributions


- · first interactive tree comparison system
 - automatic structural difference computation
 - guaranteed visibility of marked areas
- · scalable to large datasets
 - 250,000 to 500,000 total nodes
 - all preprocessing subquadratic
 - all realtime rendering sublinear
- scalable to large displays (4000 x 2000)
- · introduced
 - guaranteed visibility, accordion drawing

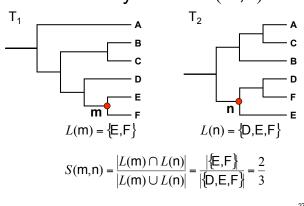

Structural Comparison







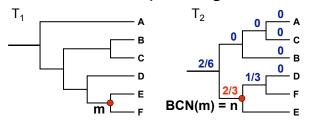
Matching Interior Nodes



Previous Work

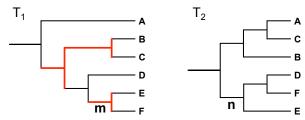
- tree comparison
 - RF distance [Robinson and Foulds 81]
 - perfect node matching [Day 85]
 - creation/deletion [Chi and Card 99]
 - leaves only [Graham and Kennedy 01]

26


Similarity Score: S(m,n)

27

29


Best Corresponding Node

- •BCN(m) = $\operatorname{argmax}_{v \in T_2}(S(m, v))$
 - computable in O(n log² n)
 - linked highlighting

28

Marking Structural Differences

- Nodes for which $S(v, BCN(v)) \neq 1$
 - Matches intuition

Outline

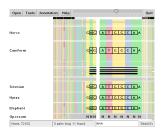
- · Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework

Genomic Sequences

- · multiple aligned sequences of DNA
- now commonly browsed with web apps
 - zoom and pan with abrupt jumps
 - previous work
 - Ensembl [Hubbard 02], UCSC Genome Browser [Kent 02], NCBI [Wheeler 02]
- investigate benefits of accordion drawing
 - showing focus areas in context
 - smooth transitions between states
 - guaranteed visibility for globally visible landmarks

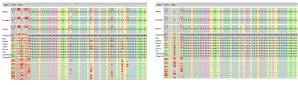
31

SequenceJuxtaposer


- · comparing multiple aligned gene sequences
- · provides searching, difference calculation
- [video]
 - video/software downloadable from http://olduvai.sf.net/tj

32

Searching


- · search for motifs
 - protein/codon search
 - regular expressions supported
- · results marked with guaranteed visibility

33

Differences

- explore differences between aligned pairs
 - slider controls difference threshold in realtime
- · results marked with guaranteed visibility

34

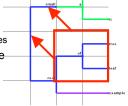
SJ Contributions

- · fluid tree comparison system
 - showing multiple focus areas in context
 - guaranteed visibility of marked areas
 - thresholded differences, search results
- scalable to large datasets
 - 2M nucleotides
 - all realtime rendering sublinear

Outline

- Accordion Drawing
 - information visualization technique
- TreeJuxtaposer
 - tree comparison
- SequenceJuxtaposer
 - sequence comparison
- PRISAD
 - generic accordion drawing framework

Goals of PRISAD


- · generic AD infrastructure
 - tree and sequence applications
 - PRITree is TreeJuxtaposer using PRISAD
 - PRISeq is SequenceJuxtaposer using PRISAD
- · efficiency
 - faster rendering: minimize overdrawing
 - smaller memory footprint
- correctness
 - rendering with no gaps: eliminate overculling

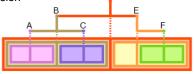
37

PRISAD Navigation

generic navigation infrastructure

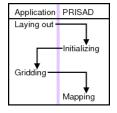
- application independent
- uses deformable grid
- split lines
 - · Grid lines define object boundaries
- horizontal and vertical separate-
 - · Independently movable

38

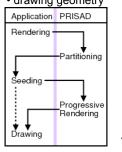

Split line hierarchy

- · data structure supports navigation, picking, drawing
- · two interpretations

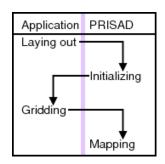
- linear ordering


- hierarchical subdivision

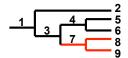
PRISAD Architecture


world-space discretization

- preprocessing
 - · initializing data structures
 - · placing geometry

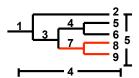

screen-space rendering

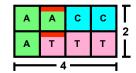
- · frame updating
 - analyzing navigation state
 - · drawing geometry


World-space Discretization

interplay between infrastructure and application

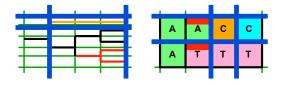
Laying Out & Initializing


- · application-specific layout of dataset
 - non-overlapping objects
- initialize PRISAD split line hierarchies
 - objects aligned by split lines



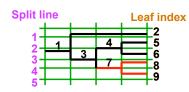
Laying Out & Initializing

- application-specific layout of dataset
 - non-overlapping objects
- initialize PRISAD split line hierarchies
 - objects aligned by split lines



4

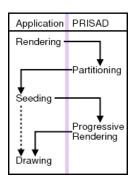
Gridding


 each geometric object assigned its four encompassing split line boundaries

44

Mapping

- · PRITree mapping initializes leaf references
 - bidirectional O(1) reference between leaves and split lines



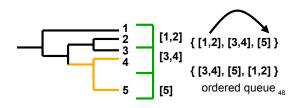
1	2	Мар
2	5	
3	6	
4	8	
5	9	

45

Screen-space Rendering


control flow to draw each frame

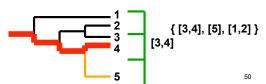
4


Partitioning

- · partition object set into bite-sized ranges
 - using current split line screen-space positions
 - required for every frame
 - subdivision stops if region smaller than 1 pixel
 - or if range contains only 1 object

Seeding

- reordering range queue result from partition
 - marked regions get priority in queue
 - drawn first to provide landmarks


Drawing Single Range

- each enqueued object range drawn according to application geometry
 - selection for trees
 - aggregation for sequences

49

PRITree Range Drawing

- select suitable leaf in each range
- draw path from leaf to the root
 - -ascent-based tree drawing
 - -efficiency: minimize overdrawing
 - only draw one path per range

Rendering Dense Regions

- correctness: eliminate overculling
 - · bad leaf choices would result in misleading gaps
- efficiency: maximize partition size to reduce rendering
 - · too much reduction would result in gaps

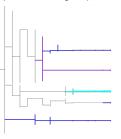
Intended rendering

Partition size too big 51

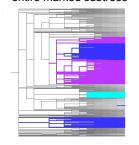
Rendering Dense Regions

- correctness: eliminate overculling
 - · bad leaf choices would result in misleading gaps
- efficiency: maximize partition size to reduce rendering
 - · too much reduction would result in gaps

Intended rendering



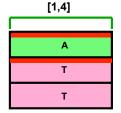
Partition size too big 52


PRITree Skeleton

 guaranteed visibility of marked subtrees during progressive rendering

first frame: one path per marked group

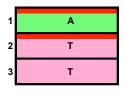
full scene: entire marked subtrees

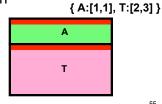


PRISeq Range Drawing: Aggregation

- aggregate range to select box color for each sequence
 - random select to break ties

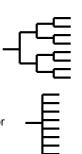
[1,4]

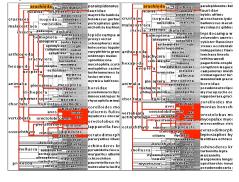

A A C C
A T T T
T T C



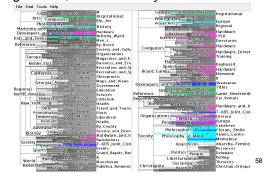
PRISeq Range Drawing

- collect identical nucleotides in column
 - form single box to represent identical objects
 - · attach to split line hierarchy cache
 - · lazy evaluation


· draw vertical column

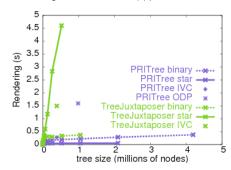

PRISAD Performance

- PRITree vs. TreeJuxtaposer (TJ)
- · synthetic and real datasets
 - complete binary trees
 - · lowest branching factor
 - · regular structure
 - star trees
 - · highest possible branching factor


InfoVis Contest Benchmarks

- · two 190K node trees
- · directly compare TJ and PT

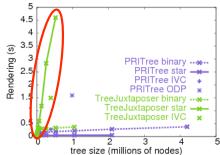
OpenDirectory benchmarks


- two 480K node trees
- · too large for TJ, PT results only

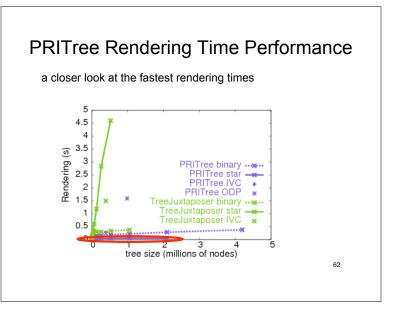
PRITree Rendering Time Performance

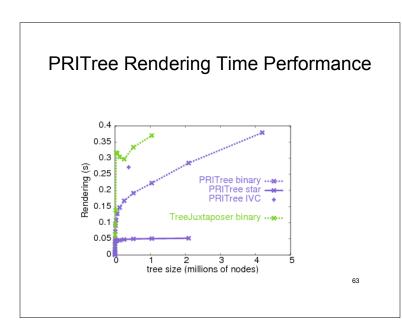
TreeJuxtaposer renders all nodes for star trees

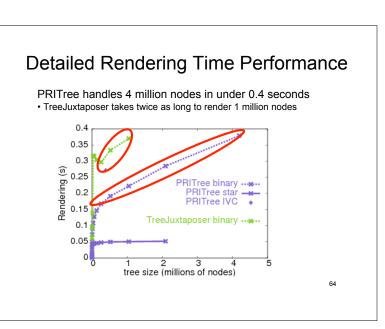
• branching factor k leads to O(k) performance

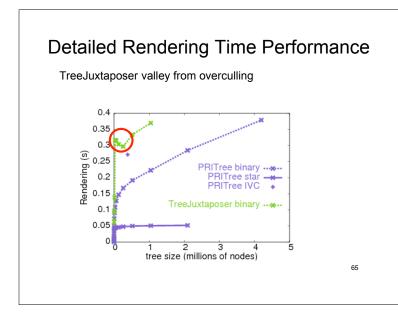


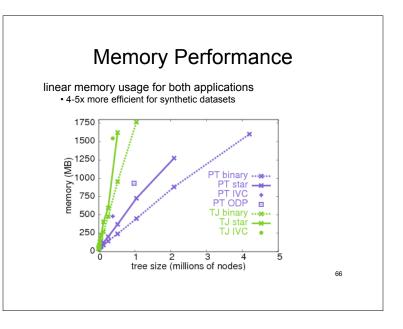
3.5

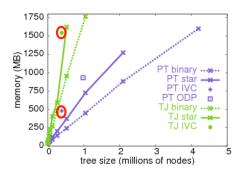

· branching factor k leads to O(k) performance


TreeJuxtaposer renders all nodes for star trees


PRITree Rendering Time Performance




PRITree Rendering Time Performance InfoVis 2003 Contest dataset • 5x rendering speedup 4.5 3.5 Rendering (s) 3 PRITree binary 2.5 PRITree star PRITree IVC 2 PRITree ODP 1.5 eeJuxtaposer binary TreeJuxtaposer star TreeJuxtaposer IVC 0.5 tree size (millions of nodes)



Memory Performance

1GB difference for InfoVis contest comparison

marked range storage changes improve scalability

67

69

71

Performance Comparison

- · PRITree vs. TreeJuxtaposer
 - detailed benchmarks against identical TJ functionality
 - 5x faster, 8x smaller footprint
 - · handles over 4M node trees
- PRISeq vs. SequenceJuxtaposer
 - 15x faster rendering, 20x smaller memory size
 - 44 species * 17K nucleotides = 770K items
 - 6400 species * 6400 nucleotides = 40M items

68

Future Work

- · future work
 - editing and annotating datasets
 - PRISAD support for application specific actions
 - · logging, replay, undo, other user actions
 - develop process or template for building applications

PRISAD Contributions

- infrastructure for efficient, correct, and generic accordion drawing
- · efficient and correct rendering
 - screen-space partitioning tightly bounds overdrawing and eliminates overculling
- · first generic AD infrastructure
 - PRITree renders 5x faster than TJ
 - PRISeq renders 20x larger datasets than SJ

70

Joint Work

- TreeJuxtaposer
 - François Guimbretière, Serdar Ta_iran, Li Zhang, Yunhong Zhou
 - SIGGRAPH 2003
- SequenceJuxtaposer
 - James Slack, Kristian Hildebrand, Katherine St.John
 - · German Conference on Bioinformatics 2004
- TJC/TJC-Q
 - Dale Beermann, Greg Humphreys
 - EuroVis 2005
- PRISAD
 - James Slack, Kristian Hildebrand
 - IEEE InfoVis Symposium 2005
 - · Information Visualization journal, to appear

Open Source

- software freely available from http://olduvai.sourceforge.net
 - SequenceJuxtaposer
 - olduvai.sf.net/sj
 - TreeJuxtaposer olduvai.sf.net/tj
 - requires Java and OpenGL
 - JOGL bindings for TJ, GL4Java for SJ (JOGL coming soon)
- papers, talks, videos also from http://www.cs.ubc.ca/~tmm

Other Projects

- Focus+Context evaluation
 - high-level user studies of systems
 - low-level visual search and memory
- graph drawing
- dimensionality reduction